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Abstract We calculate the transport coefficients of steeply repulsive inverse power, r-", 
potential fluids using the Green-Kubo rime correlation function method. We have explored the 
effect of potential steepnw on the transport coefficients of these model fluids as thcy approach 
the hardsphere limit. We have found that, even with an inverse power potential index, n = 144, 
there are still noticeable difierences in some of the pmprties when compared with the hard- 
sphere fluid at the same number density. The compressibility fador, shear viscosity and thermal 
conductivity am some 5-109 lower than the hard-spb value, although the selfdiffusion agrees 
well with the hard-sphere value for n > 12. 

1. Introduction 

Molecular dynamics (MD) computer simulation has been a useful tool for probing the 
influence of interaction potential on the transport coefficients of model simple liquids. 
Notable among these studies has been those of the hard-sphere fluid (Alder et a1 1970) 
and the Lennard-Jones (U) fluid by Levesque el a1 (1973). Most of the studies involving 
a continuous potential have used analytic forms suitable for simple molecular liquids. 
Recently there has been interest in applying MD simulation with considerably more 
steeply repulsive interaction potentials which are close to being hard spheres, as more 
realistic models for colloidal dispersions (Melrose and Heyes 1993) and granular assemblies 
(Langston et aE 1994). These real systems have interaction potentials that are extremely 
steep on the scale of the particle diameter (much steeper than for typical molecular liquids) 
and are therefore very close to being hard spheres. It is therefore of interest to understand 
how the properties of these steeply repulsive systems differ from and approach those of the 
hard-sphere system. How steep does the potential have to become before the properties of 
the fluid are statistically indistinguishable from those of the hard-sphere system itself? This 
is the subject of this study. As part of OUT study of the behaviour of these systems, in a 
previous publication (Heyes and Aston 1993), we investigated the dependence of the elastic 
moduli on the steepness of the potential and discovered that they diverge in the hard-sphere 
limit as - n for the inverse power potentials 

@(r)  = & / T Y  (1 1 
where U is some characteristic distance and E sets the energy scale for interaction between 
the particles. (The hard-sphere interaction is (1) in the n + 00 limit.) Associated with this 
result, for the shear viscosity, qs, we also concluded that the time correlation function for the 
interaction part of the transport coefficients must decay infinitely rapidly as n -+ 00. This 
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Figure 1. The pair ndial disvibudon function for lhe inverse power potential for several inverse 
power exponents and that of the hard-sphere fluid. The key is on the figure. 

is necessary to compensate for the divergence in the interaction part of the shear rigidity 
modulus, G,, in order to maintain a finite value for the shear viscosity. Here we develop 
the subject of the previous study and explore in greater detail the effect of the value of n 
on the transport coefficients of ‘inverse power’ simple fluids. In the previous study we only 
looked at vs to a small extent. Here we also consider the self-diffusion coefficient and the 
thermal conductivity, and their dependence on the value of n. 

We compute numerically the velocity autocorrelation function, C&) 

Cu(t) = ( u i ( O ) S ( r ) )  (2) 

where ui is the velocity of molecule i, 1 < i < N and (. . .) indicates an average over time 
origins. The function C,(t) is used to calculate the self-diffusion-coefficient, D 

where we have used up to tc = 4 0 0 ( m / d ’ ~  for the cut-off of the time correlation function 
(Allen and Tildesley 1989). The diffusion coefficient can also be obtained using the Einstein 
relationship. Consider the mean square displacement, WO), of a representative particle in 
the fluid 

(4) 
1 
6 

W ( t )  = -((r(t)  - r ( ~ ) ) ~ ) .  
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F i p  2. The velocity autocorrelation functions for the soft and hard spheres. 

The rate of change of W(t) gives the self-diffusion coefficient 

t +Co. 
d(W(t)') 

dt 
D =  (5 )  

We find that (5) converges more rapidly to the asymptotic limit than another expression, 
W(t)'/t. A Green-Kubo expression has been used to compute the shear viscosity via the 
shear stress, Pxy, time autocorrelation function, Cs(t), defined as 

a t )  = (p,(o)p,,(o) (6) 
where Pzy is an off-diagonal element of the pressure tensor 

where. mi is the mass of the particle and u,i is the a component of its velocity. This method 
was first used by Levesque et al (1974) who applied it to the U fluid. The infinite-frequency 
linear shear modulus is given by G ,  = NC,(O)/pkBT. The three unique off-diagonal 
components of the pressure tensor are used to improve the statistics. The shear viscosity, 
qs, is related to C&) through 
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Figure 3. The timedependent self-diRusion mefficients for Ihe soft and hard spheres. 

where 

5 -- SmCs( t )  dt. 
- c m  0 

The thermal conductivity was computed using a corresponding heat flux time correlation 
function as described in Heyes (1988). 

The infinitefrequency elastic moduli, the shear, G,, and bulk moduli, K,, can be 
computed independently using the Zwanzig and Mountain (1965) expressions 

G, = pksT + - 2np2 dmg(r ) :  (r4$) dr 
15 

and 

2np2 l m g ( r ) r 3 d  (r””) dr Km = 2 p k ~ T / 3  -k P + - d r d r  9 
where P is the pressure 

where g(r) is the radial distribution function, and the number density is p = N / V  for N 
spheres of diameter U in volume V. For the inverse power potentials, the pressure and 
mechanical properties are trivially related to the interaction energy per particle, U = U / N  

(14) 



6413 ~. ~. Transport coefficients of simple fluids 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 
0 0.1 0.2 0.3 0.4 0.5 0.6 

t 
Figure 4. The shear s m s  autocorrelation function for the n = 36 state, resolved into its kinetic 
(kk), cmss (kc) and interadon (e=) components. 

For an N-particle periodic system, such as that used in molecular dynamics (MD) or Monte 
Carlo (MC) simulation 

The interaction part of the pressure is given by 

P' = np(u)/3. 

The interaction p m  of the infinite-frequency shear rigidiw modulus is given by 

GZ = (nz -3n)p(u)/15 (17) 

(18) 
Therefore the n dependence of the elastic moduli is essentially govemed by that of the 
interaction energy. In the limit of n --f CO we found that (U) cx n-l as predicted by 
Rowlinson (1964) using a perturbation ahout the hard-sphere fluid. This result introduced 
in (17) and (18) indicates an - n divergence of the infinite-frequency shear and bulk moduli 
as n + CO. Unresolved questions include (a) how do the time correlation functions and their 
derived transport coefficients approach the hard-sphere limit (in particular their components 
for N-dependent properties such as viscosity) and (h) how large does n have to be in order 

and the interaction part of the infinite-frequency bulk rigidity modulus is given by 

K: = (2 + 3n)p(u)/9. 
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to obtain fluid physical properties statistically indistinguishable from the hard-sphere case. 
In the next section we describe simulations carried out to answer these questions. 

2. The simulations 

We carried out extremely long equilibrium molecular dynamics simulations using a series of 
potentials with n = 12,18,36,72,144, and n = 00 (using an independently written hard- 
sphere MD code) on N = 108 systems, for - lo6 timesteps, Ai, of magnitude typically 
0.014.002 in reduced units of a ( m / ~ ) ' / ~ .  With then = 144 system, simulations carried out 
with At  = 0.0003 were found to give statistically indistinguishable results from simulations 
with At = 0.001. There is a practical limit on how large n can be, without the simulation 
time steps becoming too small, which l i t s  the ability to explore phase space in a reasonable 
amount of computer time. For N hard spheres in volume V, we define a reduced number 
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Figure 5. The lime-integsated viscosity corresponding to lhe C&) of figure 4. 

density, p = N o 3 / V .  The reduced number density of particles can also be defined in 
terms of a particle volume fraction, q = 7cpo3/6. We have used the value uf = 0.427 here 
which corresponds to a reduced number density of p = 0.815 51 (or V/ VO = 1.734 using 
the notation of Alder et al 1970). This value was chosen because it is quite close to the 
fluid-solid density (y = 0.498). As the maximum fluid density is approached the system 
manifests longer-lived 'tails' in the time correlation functions, which make the evaluation of 
transport coefficients difficult by Green-Kubo formulae. The temperature was k g T / c  = 1.0 
for all simulations. The Verlet algorithm was used. All quantities are given in terms of the 
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usual particlebased units (i.e. U for length, E for energy and the mass of the particle, m 
for mass). A summary of the most important computed properties is given in table 1. In 
figure 1, we show the pair radial distribution function for varying values of the exponent, 
n, comparing these with hard-sphere MD results. As the potential becomes stiffer, the g ( r )  
increasingly resembles a hard-sphere g(r)  as r + U .  Using n = 144, the highest value of n 
chosen, there is still a noticeable difference from the HS result in the first peak height (4.29 
for the HS case versus 3.49 for n = 144). Also in table 1 we note that the value of (U) is 
not zero for n = 144, indicating a departure from the hard-sphere limit even at this high 
value of n. Table 1 gives the (U) for the MD simulations. Rowlinson (1964) expanded the 

Table 1. Summary of properties for the inverse power fluids at a reduced density of p = 0.81551 
and kgTIc = 1.0. Key: Z = PVINkaT.  The interaction energy per particle, (U), is defined 
by (15) for the inverse power potentials of (1) with h ~ n  values given below; The hard-sphere 
thermal conductivity is from the Bnskog formula using the g o )  at N = 108 and using the 
comection factor of Alder et a1 (1970). The statistical uncelrainty in the m viscosity and 
thermal mnductivity is estimated to be 2 3% and 2 1% for the self-diffusion coefficient. 

n = l 2  n=18 n=36 n=72 " = I 4 4  n = m  

NT 2107 000 1592 500 8660 00 2717 500 2229 300 - 
trim 21 070 15 925 8660.0 5435.0 4458.6 603 
Z 8.701 8.897 8.806 8.537 . 8.411 8.110 
U 1.928 1.318 0.651 0.315 0.160 0 

c: 11.32 19.35 42.06 84.96 17625 w 

K& 31.45 45.14 a.85 153.92 306.25 m 
q:k 0.0787 0.0644 0.0576 0.0484 0.0451 0.0460 

qp 0.0454 0.0907 0.1398 0.1447 0.1696 0.1902 
q? 0.9818 1.334 2.031 2.096 2.218 2.358 
qs 1.106 1.489 2.229 2.289 2.432 2.594 
K 5.033- 5.6338 6.6194 7.2328 7.5407 7.932 
Dvxf 0.102 0.0738 , 0.0577 0.0539 0.0537 0.0536 
Dmrd 0.101 0.0738 0.0577 0.0541 0.0538 0.0553 

thermodynamic properties of soft-sphere systems about the hard-sphere limit in powers of 
n-'. In then-' + 0 limit for inverse power potentials this is (u(n)) 4 3Z,/n& where Z, 
is the compressibility factor of the hard-sphere system. This allows a comparison to he made 
with the simulation (U). Using the Camahan-Starling hard-sphere equation of state for hard 
spheres (Carnahan and Starling 1969), the propohonality constant~is K(uf)  = ~ ~ B T Z , ,  and 
for uf = 0.427 has the value K(uf) = 21.42. This relation predicts for n = 12, 18,36,72 
and 144 the values of U = 1.785,1.190,0.595,0.298 and 0.149 respectively which agree 
reasonably well with the simulation values given in table I. 

We now tum to the transport coefficients. In figure 2 the velocity autocorrelation 
functions for the inverse power and hard-sphere fluids are presented. As the interaction 
becomes harder, the negative 'backscattering' region at t - 0.2-0.3 becomes less 
pronounced. The diffusion  coefficients using (3) (shown in figure 3) and also fiom 
the associated mean square displacements using (5) are given in table 1. The diffusion 
coefficients derived decrease in magnitude with increasing n. We conclude that for n > 72 
the value of D is statistically indistinguishable from the hard-sphere value. The density 
dependence of the self-diffusion coefficient of the hard-sphere fluid has been studied, with 
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Figure 6. Same as figare 4, for the n = 72 case. 

several analytic fits for D(p)  now available in the literature. A fit to simulation data given 
by Speedy (Speedy 1987) is 

D = Dm (1 - (&)) (1 + p’(0.4 - 0.83~’)). 

Erpenbeck and Wood (1991) have fitted their MD hard-sphere simulation data to the 
expression 

D =  D ~ ( l + a i p + a ~ p ’ + a s p ~ )  (20) 
where a1 = 0.038208154, a2 = 3.182808 and a, = -3.868771766. Both (19) and 
(20) include a reference self-diffusion coefficient The diffusion coefficient for an ideal 
hd-sphere gas, Dw, is determined from kinetic theory to be 

Dm 3(k~T/~m)”’/8p~’ (21) 

DE = 1.01896D~/g(u) (22) 

and DE is the Enskog theory extension of t h s e  basic assumptions to finite density 

where g(o) is the value of the pair radial dishibution function at the contact of the spheres. 
Using the Carnahan-Starling equation of state. for g(u) ,  equations (19) and (20) give self- 
diffusion coefficients of 0.0587 and 0.0664 respectively. The HS simulation carried out here. 
using N = 108 gives D = 0.054, which is in excellent agreement with the continuous 
potential D values for It > 72. Erpenbeck and Wood studied up to N = 4732, so it 
is reasonable that the self-diffusion coefficient from this work should be a little lower 
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Figure 9. The cross term, kc, component of the shear stress autocorrelation function for the n 
values considered. 

than these formulae predict. As we only considered N = 108, the present simulation 
values for D for the hard-sphere are probably a little small compared with the value in 
the thermodynamic limit. However, the main purpose of this work is to investigate the 
approach of the inverse power fluids to the hard-sphere limit. So the same degree of N 
dependency should be present in all the systems considered, to a good approximation, as 
all the simulations were performed with the same N .  The C&) components of the n = 36 
state are given in figure 4. It is seen that the interaction or, using the notation of Alder 
et a1 (1970). the cc component of the stress autocorrelation function is the most important 
term, especially at short and long times. In the intermediate-time regime the cross, kc, 
tenn makes a significant contribution to the total value of C&). In figure 5 we show 
the integrated CS(t)  giving the time-dependent shear viscosity, q&). Figure 6 shows the 
components and total C&) for then = 72 state. In figure 7 we make a comparison between 
the components of the integrated C&) for the n = 144 state (which is the closest to the 
hard-sphere interaction we considered) and those of the hard-sphere system itself, the latter 
using the numerical differentiation procedure developed by Alder er a1 (1970). Numerical 
differentiation is particularly difficult and prone to statistical fluctuations as t + 0, which 
gives rise to the observed noisy peak in the hard-sphere cc components in the t + 0 
limit. There is excellent agreement for the kk (purely kinetic) component of qs(t) between 
the n = 144 and hard-sphere system. The kc and cc hard-sphere components are higher 
than the n = 144 functions but follow the same qualitative time dependence. Taking the 
t + CO limit, the shear viscosity increases with n,  but is still N 6% smaller than the 
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Figure 10. The intnaction term cc, component of the shear suess autoconelation function for 
Le n values considered. 

hard-sphere l i t  for n = 144. In contrast to the self-diffusion coefficients, therefore, there 
are still significant differences in the value of the shear viscosity between n = 144 and 
the hard-sphere system. Clearly, a much higher value of n is required for this quantity, in 
conttast to the situation for the self-diffusion coefficient. In the following figures we present 
the n dependence of the components of C&) (the comparable hard-sphere functions are 
statistically very poor as it requires a second derivative of the numerical data for them to 
be obtained). In figure 8 we show the kk component of C&). This function decays more 
rapidly with time as n increases. The cross or kc component increases in magnitude and 
the peak shifts to shorter times as n increases (figure 9). The interaction or cc component, 
shown in figure 10, increases in magnitude and becomes more short-ranged in time as n 
increases. Interestingly, the longtime tails of the kc and cc components converge so that 
they superimpose for t Y 0.1 and become therefore effectively n independent. It is only at 
‘short’ times (i.e. t c 0.1) that then dependence is significant. Hard-sphere MD calculations 
of the shear viscosity using time correlation functions by Erpenbeck and Wood (1981) and 
of the self-diffusion coefficient from velocity autoconelation functions by Erpenbeck and 
Wood (1985, 1991) have tested the mode coupling theory prediction of a a tr3/* long-time 
tail. They found reasonable agreement for times - 4 in our units. However, the main 
failing of this theory is that it does not account for the dominance of the direct (cc and 
kc) interaction contribution to the time correlation function. The mcde coupling theory 
erroneously predicts that these are asymptotically zero compared to the kk part. 
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3. Conelusions 

Following on from a previous publication (Heyes and Aston 1994) which was devoted to 
elastic moduli of inverse power fluids, we have explored here the effect of potential steepness 
on the transport coefficients of model fluids. In figure 11, we show the total C&), which 
reveals the dominance of the cc term in determining the total function. This trend is also 
manifest in the corresponding time correlation functions for the thermal conductivity, K, as 
revealed in figure 12. We have focused on the approach to the hard-sphere limit. We have 
found that, even with an inverse power potential index, n = 144, there are still noticeable 
differences in some of the properties when compared with the hard-sphere fluid at the 
same number density. The compressibility factor, shear viscosity and thermal conductivity 
are some 540% lower that the hard-sphere value, whereas the self-diffusion agrees well 
for n > 72. 
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